
1 
 

 

 

 

Clustering 

 
The Issue: 

In this lab, we are given the USArrests dataset, which includes 

information of number of arrests per 100,000 residents for each of 

three crimes (: Assault, Murder, and Rape) in the United States. Our 

task is to perform principal component analysis (PCA) to reduce the 

dimensionality of the data and interpret the principal components. We 

will also use k-means clustering and hierarchical clustering to identify 

patterns and groupings in the data. 

The USArrests dataset has five attributes for each state: State name, 

Murder rate, Assault rate, UrbanPop (which measures the percentage 

of the population living in urban areas), and Rape rate. 

First, we will perform PCA to identify the most important patterns in 

the data and reduce the number of variables.  

Next, we will use k-means clustering to group the states into clusters 

based on their crime rates. We will need to choose an appropriate 

number of clusters (k) that balances the benefits of having more 

clusters. 

Finally, we will perform hierarchical clustering to identify clusters in 

a hierarchical structure, using a dendrogram. This will allow us to 

explore different levels of granularity in the clustering solution. 
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Findings: 

From PCA we interpret that, first loading vector demonstrates a 

much correlation between major crimes and urbanization level. 

Whereas the second loading vector demonstrates a less correlation 

between these crimes and urbanization level. Thus, murder, assault, 

and rape occur together in states, although there is little correlation 

between these crimes and urban population. 

Performing k-means clustering, we find that as “k” value is 

increasing the “tot.withinss” decreasing, indicating that algorithm 

has successfully identified clusters that are homogenous and well-

separated from each other. 

Performing hierarchical clustering resulting in attractive tree-based 

observation called dendrograms. Average and complete linkage 

comparatively yield more balanced dendrograms.  

Discussion: 

From PCA, the first main component is responsible for 62.0% of the 

variation in the data, with the second principal component accounting 

for 24.7%, the third for 8.91%, and the fourth for 4.34%. 

From k-means clustering, with k=2, we get “tot.withinss” value as 

128.6, indicating that the data points within each cluster are not 

tightly packed around their respective centroids, and the clusters may 

be overlapping or poorly separated from each other. With k=3, we get 

“tot.withinss” value as 97.97, indicating that the total variation within 

each cluster is relatively low. If we increase k-value, “tot.withinss” 

value decreases, resulting in tightly packed cluster. 

From hierarchical clustering, code yielded balanced dendrograms 

from complete and average linkage but yielded a poor dendrogram 

from single linkage. 

 

 
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Appendix A: Methods 

PCA is a technique used to reduce the dimensionality of a dataset by 

identifying patterns in the data. To perform PCA, we first calculate 

the mean and variance of the variables in the dataset. If the variables 

have different values for mean and variance, we use the prcomp() 

function in R to perform PCA. This gives us the center, scale, rotation, 

sdev, and x values. Center and scale corresponding to the mean and 

standard deviation of the variables. We can then plot the first two 

principal components using the biplot() function. We can also 

calculate the variance and proportion of variance explained by each 

principal component. Plot the proportion of variance explained by 

each component using the plot() function.  

To perform k-means clustering, we start with a dataset in matrix 

format that is split into two equal halves. We use the kmeans() 

function in R to cluster the data. Then plot the observations, coloring 

each according to its cluster assignment. We repeat this process using 

k=3, and observe the tot.withinss value (which measures the total 

within-cluster sum of squares). Based on our observations, we draw 

conclusions about the effectiveness of the clustering algorithm.  

To perform hierarchical clustering we use hclust() function. We can 

perform average, single, and complete linkage. We then use the 

plot() function to generate dendrograms. Dendrogram are tree-based 

diagrams that visualize the clustering results. We apply this process 

to a three-dimensional dataset using correlation-based distance. It 

measures similarity between observations. 
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Appendix B: Results 

Below result is a plot obtained from PCA 

 

Figure 1. Biplot for first two principal components 

 

Next we can see result of prcomp() 
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Figure 2. Variance plots 

---------------------------------------------------------------------------------- 

 

 

 

 

 

 

 

 



6 
 

Below are the plots from k-means clustering for k=2, k=3. 

 

Figure 3. k-means clustering for different k values. 

 

Next we see various results from k-means clustering, for k=2 & k=3. 
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-------------------------------------------------------------------------------- 

Below we see the various results of hierarchical clustering, 

 

 

Figure 4. Hierarchical clustering performing on complete, average and single linkage 
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Figure 5. Hierarchical clustering with scaled features 
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Figure 6. Complete linkage with correlation-based distance. 
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Appendix C: Code 

We used R language and performed our code in R-Studio, 

Code for PCA: 

states <- row.names(USArrests) 

states 

names (USArrests) 

apply (USArrests , 2, mean) 

apply (USArrests , 2, var) 

pr.out <- prcomp (USArrests , scale = TRUE) 

names (pr.out) 

pr.out$center 

pr.out$scale 

pr.out$rotation 

dim (pr.out$x) 

biplot (pr.out , scale = 0) 

 

pr.out$rotation = -pr.out$rotation 

pr.out$x = -pr.out$x 

biplot (pr.out , scale = 0) 

pr.out$sdev 

 

#variance explained by each principal component 

pr.var <- pr.out$sdev^2 

pr.var 

 

#proportion of variance 

pve <- pr.var / sum (pr.var) 

pve 
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par (mfrow = c(1, 2)) 

plot (pve , xlab = " Principal Component ", 

        ylab = " Proportion of Variance Explained ", ylim = c(0, 1), 

        type = "b") 

plot ( cumsum (pve), xlab = " Principal Component ", 

         ylab = " Cumulative Proportion of Variance Explained ", 

         ylim = c(0, 1), type = "b") 

--------------------------------------------------------------------------------------------------------------- 

Code for k-means clustering: 

set.seed (2) 

x <- matrix ( rnorm (50 * 2), ncol = 2) 

x[1:25, 1] <- x[1:25, 1] + 3 

x[1:25, 2] <- x[1:25, 2] - 4 

 

km.out <- kmeans(x, 2, nstart = 20) 

km.out 

km.out$cluster 

km.out$tot.withinss 

km.out$totss 

km.out$withinss 

 

par (mfrow = c(1, 2)) 

plot (x, col = (km.out$cluster + 1), 

      main = "K- Means Clustering Results with K = 2", 

      xlab = "", ylab = "", pch = 20, cex = 2) 

 

set.seed (4) 

km.out <- kmeans (x, 3, nstart = 20) 

km.out 
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plot (x, col = (km.out$cluster + 1), 

      main = "K- Means Clustering Results with K = 3", 

      xlab = "", ylab = "", pch = 20, cex = 2) 

km.out$tot.withinss 

km.out$withinss 

--------------------------------------------------------------------------------------------------------------- 

Code for hierarchical clustering: 

hc.complete <- hclust ( dist (x), method = "complete") 

hc.average <- hclust ( dist (x), method = "average") 

hc.single <- hclust ( dist (x), method = "single") 

 

par (mfrow = c(1, 3)) 

#complete linkage 

plot (hc.complete, main = " Complete Linkage ", 

      xlab = "", sub = "", cex = .9) 

#average linkage 

plot (hc.average , main = " Average Linkage ", 

      xlab = "", sub = "", cex = .9) 

#single linkage 

plot (hc.single, main = " Single Linkage ", 

      xlab = "", sub = "", cex = .9) 

 

cutree (hc.complete, 2) 

cutree (hc.average , 2) 

cutree (hc.single, 2) 

cutree (hc.single, 4) 

 

xsc <- scale (x) 

plot ( hclust ( dist (xsc), method = "complete") , 

         main = " Hierarchical Clustering with Scaled Features ") 
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x <- matrix ( rnorm (30 * 3), ncol = 3) 

dd <- as.dist (1 - cor (t(x))) 

plot ( hclust (dd, method = "complete") , 

         main = " Complete Linkage with Correlation - Based Distance ", 

         xlab = "", sub = "") 

 


